I’m glad to announce that my first paper was published in Geophysical Research Letters. A link to the official GRL page is at the bottom of this post. You can also find it in the TU Delft repository.
Abstract
Observations show that subdaily precipitation extremes increase with dew point temperature at a rate exceeding the Clausius-Clapeyron (CC) relation. The understanding of this so-called super CC scaling is still incomplete, and observations of convective cell properties could provide important information. Here the size and intensity of rain cells are investigated by using a tracking of rainfall events in high-resolution radar data. Higher intensities are accompanied by larger rainfall areas. However, whereas small rain cells mainly follow CC scaling, larger cells display super CC behavior. Even more, for dew point exceeding 15°C, the rain cell size has to increase in order to sustain super CC scaling and a remarked increase in rain cell area is found. Our results imply that the source area of moisture, the cloud size, and the degree of mesoscale organization play key roles in the context of a warming climate.
Lochbihler, K., G. Lenderink, and A. P. Siebesma (2017), The spatial extent of rainfall events and its relation to precipitation scaling, Geophys. Res. Lett., 44, 8629–8636, doi:10.1002/2017GL074857.